
Proactive Transaction Scheduling for Contention
Management

Geoffrey Blake
University of Michigan

Ann Arbor, MI
blakeg@umich.edu

Ronald G. Dreslinski
University of Michigan

Ann Arbor, MI
rdreslin@umich.edu

Trevor Mudge
University of Michigan

Ann Arbor, MI
tnm@umich.edu

ABSTRACT
Hardware Transactional Memory offers a promising high
performance and easier to program alternative to lock-based
synchronization for creating parallel programs. This is par-
ticularly important as hardware manufacturers continue to
put more cores on die. But transactional memory still has
one main drawback: contention. Contention is caused by
multiple transactions trying to speculatively modify the same
memory location concurrently causing one or more transac-
tions to abort and retry its execution. Contention serializes
the execution, meaning high contention leads to very poor
parallel performance. As more cores are added, contention
worsens. To date contention-manager designs have been pri-
marily reactive in nature and limited to various forms of ran-
domized backoff to effectively stall contending transactions
when conflicts occur.

While backoff-based managers have been popular due to
their simplicity, at higher core counts our analysis on the
STAMP benchmark suite shows that backoff-based man-
agers perform poorly. In particular, small groups of trans-
actions create hot spots of contention that lead to this poor
performance. We show these hot spots commonly consist
of small sets of conflicts that occur in a predictable manner.
To counter this challenge we introduce a dynamic contention
management strategy that minimizes contention by using
past history to identify when these hot spots will reoccur
in the future and proactively schedule affected transactions
around these hot spots. The strategy used predicts future
contention and schedules to avoid it at runtime without the
need for programmer input. Our experiments show that by
using our proactive scheduling technique we outperform a
backoff-based policy for a 16 processor system by an aver-
age of 85%.

Categories and Subject Descriptors
C.0 [General]: System architectures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MICRO’09, December 12–16, 2009, New York, NY, USA.
Copyright 2009 ACM 978-1-60558-798-1/09/12 ...$10.00.

General Terms
Design, Experimentation, Performance

Keywords
Hardware transactional memory, Proactive scheduling, Soft-
ware runtime

1. INTRODUCTION
Transactional Memory (TM) [15] promises to simplify con-

current programming by giving the programmer the abstrac-
tion of a critical section behaving as an atomic block of code.
Instead of having to carefully compose the correct sequence
and set of locks to protect a critical section, a programmer
simply has to provide where to begin and end the critical
section. TM also provides the performance advantages of
fine-grained locking because a transaction effectively “locks”
each word of memory touched during its execution.

These key advantages have encouraged many efforts to
build prototypes and analyze the overall effectiveness of TM
in hardware [13, 20, 31, 11, 24, 23, 6], software [28, 21, 14,
27], and hybrid implementations [19, 10]. This past research
has laid down the blueprints for the necessary infrastruc-
ture to build a correct TM that executes critical sections as
atomic units of work. This previous work has shown that
transactions work just as well and in many cases better on
parallel programs that were originally written with locks.

Even though initial research has shown TM to be very
promising, new benchmarks have emerged to test TM sys-
tems more rigorously. In particular, benchmarks from the
STAMP [9] suite have shown TM applications can suffer
from severe performance degradation due to contention. Con-
tention occurs when multiple transactions try to access or
modify overlapping memory regions. When this happens,
contention management decides how long to stall before re-
starting the transaction causing the conflict to ensure for-
ward progress. Ineffective strategies for stalling and restart-
ing can significantly degrade utilization of parallel resources.

Currently the most commonly used form of contention
management is a variation on randomized exponential or
linear backoff which determines how long a transaction is
stalled before restarting after detecting a conflict. Random-
ized backoff is inadequate primarily because it reacts to con-
flicts and does not prevent them from recurring in the future
under similar circumstances leading to worse than expected
performance. To reduce contention some research efforts
have considered strategies such as selectively marking cache
lines which is used by software and hybrid TMs [10, 19],

156

open nesting with compensation routines as first proposed
by McDonald et al. [18], and early release proposed by Skare
et al. [29]. The reduction of contention achieved by these ap-
proaches requires careful annotation of parallel code sections
by the programmer, undermining the ease-of-use advantage
of TM over locking. To eliminate these added complexi-
ties, and maintain TM’s main selling point as being easy to
use, we propose our proactive scheduling contention man-
ager. It is a dynamic and minimalistic contention manger
that learns to recognize situations where conflicts are likely
and acts to reduce contention in Hardware Transactional
Memories (HTMs) before they occur by rescheduling trans-
actions, thereby minimizing wasted computation. Unlike
past methods to eliminate contention, this technique re-
quires no programmer input or knowledge of its existence
and is able to extract better performance on average over
simpler contention managers.

Our technique features the following innovations:

• A minimal amount of additional hardware to enable
logging of conflicting transaction pairs in a software
runtime.

• A confidence based predictor written in software that
assesses the probability of future conflict by analyzing
the correlation of transaction pairs.

• An efficient user-space thread scheduler that operates
independently of the operating system’s thread sched-
uler.

Our proposed solution proactively schedules transactions,
by identifying threads likely to conflict dynamically during
runtime, and enforces a more appropriate schedule. In ad-
dition, our solution does not require code annotations by
the programmer. In our experiments, we demonstrate the
software proactive scheduler can increase performance by an
average of 85% compared to a simple backoff based manager
and reduce contention by 4-5x on average for 16 processor
systems.

The rest of this paper is organized as follows. In Sec-
tion 2 we illustrate our observations that transactions con-
flict in small predictable groups, leading to the hypothesis
that transactions can be scheduled for better performance.
Section 3 describes the implementation of our HTM system
and the software proactive scheduling contention manager
prototype. Section 4 analyzes our results. Section 5 discuses
related work, and finally Sections 6, and 7 cover future work
and present our conclusions.

2. MOTIVATION
Contention management design is an important consid-

eration when building an HTM. The goal of an effective
contention manager is to maximize the concurrency of the
system by ensuring forward progress and preventing trans-
actions from repeatedly aborting and restarting due to con-
tention. Contention is not a large problem in most cases
at small processor counts. But as systems scale to higher
processor counts, the problem of contention between trans-
actions is exacerbated. A common method to handle con-
tention is randomized backoff. It is an extremely simple and
low-cost contention manager. While it works well at low
processor counts, we have found that as the number of pro-
cessors and threads increase, the effectiveness of randomized

backoff rapidly decreases. Referring to Table 1, we see the
conflict rates for the STAMP benchmark suite running on
an Eager Commit/Eager Conflict Detecting HTM, similar to
LogTM [20] using randomized linear backoff for contention
management. For all but the benchmark Ssca2, contention
is a problem and limits scaling over sequential code. Of par-
ticular interest is the Genome and Kmeans benchmarks. For
these two, contention becomes a large problem at 16 proces-
sors and in both cases the performance scaling reverses and
is worse than the performance at 8 processors. Likewise for
the Intruder benchmark, as at 8 processors its performance
falls below that of the 4 processor configuration and at 16
processors this trend continues.

As shown in Table 1, the effectiveness of randomized back-
off in managing contention degrades as the number of cores
increases. We propose scheduling transactions in place of
randomized backoff to manage contention. This idea lever-
ages two key observations: most applications that benefit
from parallel programming have large problem set sizes and
are mostly throughput oriented, so there should always be
another thread ready from the current program to do other
independent work that can be swapped in to allow better for-
ward progress. Another observation that we validate later is
that transactions conflict mostly in small groups indicating
there is extra parallelism to exploit by swapping threads.
We use these observations to build our proactive scheduler
to extract better performance dynamically at runtime. In
Figure 1 we show a simple example of how scheduling can
manage contention and improve performance. The exam-
ple shows a two processor system trying to execute three
transactions. In the backoff case, Tx2 tries to execute and
conflicts with Tx1, the backoff contention manager will pick
a backoff period to wait before retrying Tx2’s execution. In
this case the backoff period is too short, and Tx2 executes
again but conflicts. The backoff policy increases the backoff
time, Tx2 waits long enough for the conflict to clear and
commits successfully. Tx3 then executes and commits. We
propose that by using the past conflict history, a scheduler
can predict that it is likely that Tx2 and Tx1 will conflict.
The scheduler can suspend the thread trying to execute Tx2,
and run Tx3 in its place. This improves performance by per-
forming other useful work in place of a transaction that is
likely to conflict with another concurrently executing trans-
action. Another way to think of this technique is that it
is dynamically creating blocking synchronization (locks) or
optimistic synchronization (transactions) when appropriate.
Unlike backoff techniques that stall transactions to avoid
conflicts, our technique can bring in new work to maximize
useful computation instead of spending it stalling. We also
maintain a history so blocking synchronization decisions do
not immediately revert back to optimistic synchronization
that would allow conflicts to reoccur.

2.1 Randomized Backoff Theory
To understand why randomized backoff contention man-

agers may perform poorly, we investigated studies from the
network domain that deal with similar problems of con-
tention for a network link. In “Performance Analysis of Ex-
ponential Backoff ” by Kwak et al. [16], the authors derive
a mathematical model of an ethernet system to understand
how it performs as the number of parallel transmitters con-
tending for the ethernet wire is increased. As contention to
transmit on the network increases, they found that the prob-

157

Table 1: Percent of all begun transactions that conflict and require restart and resultant speed-up over sequen-
tial execution for the STAMP benchmark suite using Randomized Linear Backoff for an Eager Commit/Eager
Conflict Detecting HTM

Benchmark
2 CPU 4 CPU 8 CPU 16 CPU

Contention Speedup Contention Speedup Contention Speedup Contention Speedup
Delaunay 28.3% 1.4 42.3% 1.9 53.8% 2.6 67.1% 3.0
Genome 0.3% 1.8 1.3% 2.4 4.7% 2.8 70.0% 0.3
Kmeans 0.1% 1.9 0.2% 3.9 4.5% 6.6 24.4% 6.1
Vacation 0.1% 1.9 0.3% 2.4 0.6% 2.9 1.8% 2.9
Intruder 2.5% 1.5 12.2% 1.5 36.4% 0.9 68.7% 0.4
Ssca2 0.0% 1.9 0.0% 3.6 0.0% 7.0 0.1% 12.7
Labyrinth 90.8% 1.2 96.8% 1.2 98.6% 1.1 99.5% 1.0

Tx1_end

Tx1

Tx2

Tx2

Conflict

Conflict

Backoff

Backoff

Tx2_end

Tx1

Tx1_end

Tx3

Tx2

Tx3_end

Sched
Tx2

Run Tx2

Tx2_end

Tx3

Tx2

Tx3_end

SchedulingBackoff

Time

Figure 1: Example illustrating the advantages of
proactively scheduling transactions to more effec-
tively utilize parallel resources

ability of successful transmission decreased to ∼35%. Qual-
itatively, this is what is seen with the STAMP benchmarks
in our experiments. As the number of parallel transactions
in the system increases, the probability of successfully com-
pleting becomes steadily smaller. The final conclusion of
Kwak’s et al. is that randomized backoff is the best solu-
tion for a system that has no knowledge of what is trying to
run on a contended resource even though it performs poorly
under high contention. However, in the case of transactions
we do have knowledge, opening the possibility for a better
solution. The next section will empirically show the exis-
tence of conflict patterns in benchmarks, which motivates
the development of a predictor to manage contention and
improve upon randomized backoff.

2.2 STAMP Benchmark Suite Profile
The STAMP benchmark suite is growing in popularity

among researchers in the transactional memory field because
of its long-term vision of how TM will likely be used in future
applications. Recent works from Ramadan et al. [22], Bobba
et al. [7] have turned to the STAMP suite to evaluate their
systems. In early TM research, researchers used existing
parallel programs from suites such as SPLASH2 [30], which
were highly tuned parallel codes with very small transac-
tions. But these are not very representative of future parallel
programs because of this high optimization. In contrast, the
STAMP suite uses large coarse grained transactions in rela-
tively poorly tuned parallel code, which is considered more
representative of future uses of TM, i.e. parallel program-
ming for everybody else. This allows researchers to better
predict future problems TMs may face. In particular, the

���

���

���

���

���

	���

��

��

��

��

��

	��

�
��
�
��
�
�	

�	
��
�

�

��

��

�
��
�
��
�
�	

�	
��
�

�

��

	��

���

���

���

��

	�

��

��

��

	 � � � � � � � �

	
�

	
	

	
�

	
�

	
�

	
�

	
�

	
�

	
�

	
�

�
�

�
	

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
	

�
�

�
�

�
�

�
�
��
�
�
�

�
�	
�
�
	

��
��

��
�������	�����	�

�
�	
�
�
	

��
�

Figure 2: Histogram breakdown showing distribu-
tion of the number of individual unique conflicts
each transaction sees during a program run of De-
launay

STAMP benchmarks show rising amounts of contention as
the number of processors is increased when using a random-
ized backoff technique.

Our scheduling technique depends on the number of unique
conflicts experienced by each transaction to be small. A
unique conflict is a conflict between two critical sections of
separate threads. If the average number of unique conflicts
is large per transaction, it would indicate that a new thread
swapped in to replace a predicted conflict would also be
likely to conflict, meaning the best case is to serialize. In
this case, scheduling would be a high cost backoff algorithm
because of the extra overhead scheduling requires to per-
form the scheduling decisions and therefore would be likely
worse or equivalent to a simple backoff scheme. To test this
property of small conflicting groups, we tagged each trans-
action in the program with a transaction ID (TxID) that
was based off the program counter (PC) of the TM BEGIN
instruction, and the current thread ID. We then ran the
STAMP benchmarks and recorded all conflicting pairs of
TxIDs. In Figure 2 we show the histogram for unique con-
flicting transaction pairs for the Delaunay benchmark which
has 6592 unique TxIDs. The histogram shows that the num-
ber of unique conflicts each transaction experiences is very
small, on the order of tens. The small number of unique con-
flicts point to the existence of hot spots in the execution and
with proper identification it is possible to schedule around
these hot spots, thereby reducing contention and increasing
performance. These types of hot spots are common across
all the benchmarks tested.

3. SCHEDULER IMPLEMENTATION
The prototype contention manager is implemented as a

user-space software runtime layer built on top of a Eager/Ea-
ger Transactional Memory system implemented in the M5
simulator [3] as shown in Figure 3. The HTM works in con-

158

�������	
��
������������	���������������

�����������	
���
��
�����������	
�������������

�������������	

���������������
����������
��
��������
��� ����������

��!�����

 �������

��"������	���	����!�������
����������	#�$	����������������
�����
�����������������	�

Figure 3: Hardware/Software stack of our proposed
system

%�&
'�

��
������

'����
������%���(���	��
)

���%������
������

�������	
���

���
�����	
���

���������������
���

�

�������������
���

�*�$�)��%����
��������
����
��������������������

$	�����		���

�������
��	
���
�

Figure 4: Additional registers and interconnect ex-
tensions to support proactive scheduling. New ad-
ditions are bolded.

junction with the software runtime to implement our proac-
tive scheduling contention manager. The scheduler is a fully
distributed algorithm that each processor runs in parallel
whenever a transaction wishes to begin execution. First,
each processor looks at a snapshot of what transactions are
currently executing on the system and gathers information
about conflicts from the global transaction conflict graph
stored in memory. Each processor then locally decides its
probability of generating a conflict from information derived
by these lookups and decides the appropriate course of ac-
tion: swap in a new thread, stall briefly or begin execution.
None of the processors running the scheduling algorithm ex-
plicitly communicate their intentions to each other, nor is
the system snapshot necessarily consistent when viewed by
multiple processors because it updated without using any
form of synchronization. While enabling communication or
globally consistent snapshots could be beneficial, the syn-
chronization necessary to provide such facilities would be
overly prohibitive. In the following subsections we will de-
scribe the pieces that constitute this system and how they
fit together.

3.1 M5-TM
We build off an Eager/Eager transactional memory model

developed inside the M5 full system simulator. The design
closely resembles the original LogTM [20] and details of the
base implementation can be found in [4]. To enable log-
ging the necessary data for the software runtime we add
additional functionality to the CPU, cache controllers and
coherent interconnect.

The CPU and interconnect modifications are shown in
Figure 4 and consist of additional registers and an out-
of-band data channel which are bolded in Figure 4. The
next set of registers are specific to our scheduling contention
manger, though they could be used by other contention man-

agers. The TxID register holds the ID of the currently run-
ning transaction. The TxSize register is updated on transac-
tion commit with the total size of read and write sets. The
final set of registers hold a read and write set summaries
in the form of bloom filters [5] that can be accessed by the
software scheduling runtime.

The second modification is to the coherent interconnect
and the cache controllers. When the cache has to notify a
remote transaction it must abort due to a conflict, the cache
controller first gets the value of the TxID register from the
CPU. Then it sends a response back to the remote proces-
sor containing this TxID over the interconnect as an out-of-
band data response. When the remote cache receives this
response, it passes the conflicting TxID value back to the
remote processor to use to update the conflict information.
This conflicting TxID is stored in one of the general purpose
registers for direct use by the abort routine which is imme-
diately vectored to by the CPU when a conflict occurs.

3.2 Proactive Scheduling Runtime
The software proactive scheduling runtime is implemented

as a user-space thread scheduler. This design was chosen so
the cost of calling into the scheduler at the start of every
transaction is minimal. We use the pthread library provided
in Linux to suspend threads and force the operating system
scheduler to execute threads in an order determined by the
proactive scheduler. The runtime uses three global data-
structures and three main function routines to implement
the distributed proactive scheduling algorithm.

3.2.1 Data Structures
There are three global data structures used by the schedul-

ing runtime. These are the CPU Status Array, Transaction
Stats table, and the Conflicts table. These data-structures
provide the snapshot of the current transactions executing
in the system and the conflict history in the form of a graph.
An example of the required data structures for an eight pro-
cessor system is shown in Figure 5.
CPU Status Array: The CPU Status array is a globally
accessible array that is sized to the number of processors
present in the system. As seen in Figure 5, it is an eight
processor system so the array is of size eight. The array
contains the information of what transaction is running cur-
rently on what processor by storing its TxID in that proces-
sor’s corresponding entry.
Transaction Stats Table and Conflict Table: The next
two data structures hold information about each individual
transaction and also maintain information about past con-
flicts which is represented as a dependency graph using a
full matrix representation. The Transaction Stats table is
a global table shared by all threads, and each entry in the
Transaction Stats table has its own Conflict table which is
a row of the conflict graph matrix. Each Conflict table en-
try holds the saturating counter conf that represents the
confidence of a conflict occurring in the future between a
pair of transactions. A Transaction Stats table entry stores
information such as the AvgSize variable, used to indicate
the average historical runtime of this transaction represented
using the overall number of memory addresses touched dur-
ing execution. The table entry also holds a bloom filter
representation of the most current successful commit of the
transaction’s read and write set. The purpose of these filters
will be covered in the next section. The Tx waiting on vari-

159

�+$�

%�&������������

���	������	
��������,�� %�	!�������,���

�+- �����

�+$� �+$��+$� �+$� �+$�

�+$�*
��	!

�.
��/�
����01����23
4����01����23
�+0�����	
0�	
%�	!������,��5

�+$� �+$�

�+$�6
��	!

�+$�-
��	!

�+$�-
��	!

�+$�-
��	!

�+$�7
��	!

�+$�*
��	!

�+$�*
��	!

�+$�6
��	!

�+$�7
��	!

�+$�6
��	!

�+$�8
��	!

�+$�9
��	!

�+$�:
��	!

�+$�;
��	!<

<
<

< �+$�7
��	!

�+$�8
��	!

�+$�9
��	!

�+$�:
��	!

�+$�;
��	!

�+$�8
��	!

�+$�9
��	!

�+$�:
��	!

�+$�;
��	!

�+$�8
��	!

�+$�9
��	!

�+$�:
��	!

�+$�;
��	!

�+* �����

�+6 �����

�+7 �����

�+8 �����

�+9 �����

�+: �����

�+; �����

�+$�-
��	!

�+$�*
��	!

�+$�6
��	! <�+$�7

��	!
�+$�9
��	!

�+$�:
��	!

�+$�;
��	!

=#

=#

=#

=#

=#

=
#

�+$�-
��	!

�+$�*
��	!

�+$�6
��	!

=#

Figure 5: Data structure representation for an ex-
ample 8 CPU system.

able tracks which transactions this transaction has serialized
behind. Its use will also be covered in more detail later.

In our design, the CPU Status array is implemented as a
fixed sized array which is allocated at program start since
the maximum number of processors is known. The Trans-
action Stats table is also allocated at program startup along
with the Conflict tables because the number of unique trans-
actions that can exist in the system is set at compile time
and the maximum number of TxIDs is passed to the schedul-
ing runtime library at program start. This requires a rather
large memory footprint, on the order of O(N2), but offers an
O(1) time to access any part of the table or conflict graph
matrix, reducing the overhead for each invocation of the
scheduler. In our experiments our tables grew to a maxi-
mum of 50MB for benchmarks with a large number of Tx-
IDs, and could only be implemented in software. However,
more space efficient representations can be constructed.

3.2.2 Scheduler Algorithm Implementation
The scheduler has three main routines that form the main

portion of the distributed algorithm. These functions work
to schedule transactions, update the conflict graph, update
the current snapshot of executing transactions, and update
transaction statistics. The main functions are scheduleTx(),
txConflict() and commitTx() and are described below. The
scheduler is a parallel program in its own right, any of these
three routines can be executed by any or all of the processors
concurrently.
scheduleTx(): The scheduleTx() function is called before
the start of any transaction and is shown in Example 1. It
is rather simple and works by scanning the CPU Status ar-
ray for TxIDs that could potentially conflict with the TxID
wanting to execute. We decide if a conflict exists by indexing
into the conflict graph matrix, using TxID as the row index
and the remoteTxID as the column index to get a confidence

Example 1 Schedule Transaction Pseudo Code

1 void scheduleTx (int TxID)
2 {
3 s t a r t s c h e du l e l o o p :
4 for (int i =0; i<s izeof (cpuStatusArray) ; i++)
5 {
6 i f (i !=ourCPU)
7 {
8 remoteTxID=cpuStatusArray [i] ;
9 i f (confThreshold <

10 confProb (TxID , remoteTxID))
11 {
12 logTxWaitingOnVar (TxID , remoteTxID) ;
13 i f (txS izeThresho ld >=
14 checkS ize (remoteTxID))
15 {
16 doSmallRandomBackoff () ;
17 break ;
18 }
19 else
20 {
21 p th r ead y i e l d () ;
22 goto s t a r t s c h e du l e l o o p ;
23 }
24 }
25 }
26 }
27 cpuStatusArray [ourCPU]=TxID ;
28 }

value. If the confidence value is below the confThreshold

(in our experiments the confThreshold is set to 5), the al-
gorithm continues scanning, otherwise it decides how to se-
rialize the transaction. If a conflict is predicted the function
then decides if the conflicting transaction is“small”or“large”
by indexing the Transaction Stats table. If the transaction
is large, which is done by looking at the AvgSize then the
scheduling function calls pthread_yield() to force the cur-
rently running thread to the back of its run queue in the Op-
erating System (OS). The OS will then swap in a new thread
that will try to execute its transactions. Upon return from
pthread_yield(), the function restarts the scheduling pro-
cess. If the transaction is decided to be small then a simple
random backoff is initiated to stall the current transaction
for a short while before letting it execute. This is done be-
cause calling pthread_yield() is expensive and unnecessary
for short transactions. When the transaction finds it is not
predicted to conflict with any other running transaction in
the system, it sets its TxID in the CPU Status array and
executes.

It is important to note that all the processors could be-
gin running this routine at the same time because it is a
distributed algorithm. Because there is no explicit synchro-
nization or communication among processors i.e. locks or
message passing, the scanning of the CPU Status array may
yield stale information as the processors running the routines
are in a benign data race to complete their scans and up-
date their respective entries in the CPU Status array. This
may lead to unintended conflicts because each processor may
schedule conflicting transactions without realizing it due to
inconsistent views of the CPU Status array caused by these
data races. Still, this is desirable over inserting synchro-
nization to only allow one writer at a time to the CPU Sta-
tus array because the cost of such synchronization is high

160

Example 2 Conflict Handling Pseudo Code

1 void t xCon f l i c t (int TxID , int confTxID)
2 {
3 cpu s ta tu s a r r ay [ourCPU]=NO TX;
4 incCon f l i c tProb (TxID , confTxID) ;
5 incCon f l i c tProb (confTxID ,TxID) ;
6 i f (txS izeThresho ld >=
7 checkS ize (confTxID))
8 doSmallRandomBackoff () ;
9 }

Example 3 Commit Transaction Pseudo Code

1 void commitTx(int TxID)
2 {
3 updateBloom (TxID) ;
4 updateAvgSize (TxID) ;
5 cpu s t a tu s a r r ay [ourCPU]=NO TX;
6 int TxWaitingOn=checkWasSer ia l i zed (TxID) ;
7 i f (TxWaitingOn!=NO TX)
8 {
9 i f (in te r s ec tB looms (TxID , TxWaitingOn))

10 incCon f l i c tProb (TxID , TxWaitingOn) ;
11 else
12 decConf l i c tProb (TxID , TxWaitingOn) ;
13 }
14 }

and also allows us to not worry about deadlock because we
do not use synchronization. On the other hand, starvation
could happen, but throughout our experimentation we ex-
perienced no issues with starvation. We leave it as future
work to investigate the implications starvation may have on
our technique.
txConflict(): When a transaction conflicts with another
transaction, the transaction is first rolled back. Then the
txConflict() routine as shown in Example 2 is called to
update the conflict graph matrix of the transaction pair that
conflicted. The routine accesses each transaction’s Conflict
table and looks in the entries for the respective TxIDs. The
conflicting TxID is obtained as discussed in Section 3.1, the
processor stores the ID in a general purpose register that can
be accessed by our routines easily. If the conflict has never
been seen before, the confidence is initialized to a default
value (in our case we set the default value to 5, and our
counter saturated at 10), otherwise the confidence counter
is incremented.
commitTx(): On commit, transactions call the commitTx()
function which is shown in Example 3. In this function
statistics such as average size and the current bloom filter
are updated. First the thread erases its entry in the CPU
Status array. Next the thread saves its current bloom fil-
ters. Finally the committed transaction checks to see if it
had been waiting on another transaction by checking the
TxWaitingOn variable in its Transaction Stats table entry.
If it was serialized behind another transaction, it obtains
the most current bloom filters from the table entry pointed
to by TxWaitingOn to compare against its own. If the two
summaries intersect, the thread increments the confidence of
conflict with that transaction, otherwise it decrements the
confidence. This last part using bloom filters to update con-
fidence is vitally important as it is the method by which we
identify transactions that have diverged and can predict that

Table 2: M5 Full System Simulator Parameters
Feature Description
Processors 1-16 cores Alpha ISA, 1 IPC at 2GHz
L1 Caches Private Data and Instruction Caches,

64kB, 2-way associative, 64-byte line size,
1 cycle latency

Interconnect Shared bus at 2GHz
L2 Cache Shared 64MB, 16-way associative, 64-

byte line size, 10 cycles latency
Main Memory 2048MB, 100 cycles latency
Linux Kernel Modified v2.6.18

they will no longer conflict, thereby allowing pairs of trans-
actions to resume using optimistic synchronization instead
of pessimistic synchronization.

3.3 Hybrid Proactive Scheduling
We also developed a lightweight hybrid scheme to account

for low contention cases where the proactive scheduling algo-
rithm was too expensive. This is shown in Section 4 with the
Ssca2 benchmark. The hybrid scheme starts using backoff
as its contention manager. During execution it keeps track
of the global conflict rate. If the conflict rate reaches a preset
threshold (5% in our tests), it will switch to using proactive
scheduling instead of backoff.

4. RESULTS
In this section we present our results for the proactive

scheduling runtime. We find that proactively scheduling
transactions using our technique outperforms the simpler
randomized backoff contention management scheme by an
average of 85% and reduces contention by 4-5x on average
for our largest system using 16 processors. This strongly in-
dicates that contention managers can do much better than
current ad hoc methods. We accomplish this by trading
some scheduling overhead for a reduction in re-execution of
transactions and elimination of backoff time. In the one cor-
ner case, where contention is near zero, the overhead of our
scheduling technique leads to lower performance than back-
off. We show that a simple adaptive technique can gain back
most of the performance lost, without appreciably affecting
the cases where scheduling is preferred. We will also show
sensitivity and predictor accuracy studies.

4.1 Experimental Setup
To test the scheduling runtime, we model the multicore

architecture presented in Table 2. The base TM system
provides perfect conflict detection, but does keep track of a
realistically sized bloom filter to be used by the scheduling
software. The baseline contention manager is a randomized
linear backoff algorithm that uses a Polite conflict resolu-
tion policy [25]. The backoff algorithm does not unbound-
edly grow the backoff period, it linearly grows to a maxi-
mum backoff period. On commit the current backoff period
is reset to a small initial value. Our testing methodology
runs ten different executions of each benchmark with small
random variations added to the memory latencies to get a
representative average of performance.

4.2 Benchmark Setup and Parameters
We test seven benchmarks from the STAMP [10, 9] bench-

mark suite. We modified these benchmarks to support unique
transaction IDs to use in scheduling, as well as the proper in-
frastructure to support our TM simulator. Table 3 summa-

161

Table 3: STAMP Benchmark descriptions and input parameters.
Benchmark Description and Parameters
Delaunay Refines a 2D mesh of triangles using Delaunay refinement. Input “-i inputs/large.2 -m30 -t64”
Genome Genome sequencing benchmark. Input “-g4096 -s32 -n524288 -t64”
Kmeans Kmeans clustering algorithms. Input “-m20 -n20 -t0.05 -i inputs/random50000 12 -p64”
Vacation Simulates a multi-user database, modeled as a Red-Black tree. Input “-n8 -q10 -u80 -r65536 -t131072 -c64”
Intruder Signature-based network intrusion detection benchmark that captures and reassembles packet streams for scan-

ning. Input “-a10 -l32 -n8192 -s1 -t64”
Ssca2 An efficient graph construction algorithm using adjacency arrays and auxiliary arrays. Input “-s15 -i1.0 -u1.0 -l3

-p3 -t64”
Labyrinth A transactional version Lee’s routing algorithm[17] through a maze. input “-i inputs/random-x96-y96-z3-n128.tx

-t64”
*We chose not to present the Bayes benchmark because of its non-deterministic finishing conditions as noted in [9], which
makes direct comparisons between contention managers inconclusive

Table 4: Summary of speedups for 16 processors for
Randomized Backoff and Proactive Scheduling.

Benchmark
Backoff Proactive Scheduling
Speedup Speedup

Delaunay 3.0 4.1 +36%
Genome 0.4 3.7 +825%
Kmeans 6.1 9.8 +61%
Vacation 2.9 4.0 +38%
Intruder 0.4 1.2 +210%
Ssca2 12.5 9.3 –26%*
Labyrinth 1.0 1.2 +17%
GeoMean +85%
*Corner case, contention <0.1% (Hybrid predictor has
speedup of 10.3)

rizes the benchmarks and the input parameters used. Note
that all the benchmarks over-commit the system with more
threads than processors (64 threads, maximum of 16 pro-
cessors) to enable different threads to be swapped in by our
scheduler when a conflict is predicted thereby keeping all
processors busy. We also overcommit the baseline system
to allow a fair comparison. It is reasonable to assume that
future programs will have more threads than CPUs to ex-
pose as much parallelism as possible. The input parameters
selected strike an even balance between large input set size
and reasonable simulation time.

4.3 Speedup
For our results we show three data points for discussion:

the baseline system with randomized linear backoff, our soft-
ware based proactive scheduling runtime, and the simple
hybrid scheme that can use backoff in low contention cases
or switch to our proactive scheduler if contention becomes
high. The speedups and percentage of contention for the
STAMP benchmarks are presented in Figure 6. Table 4
shows the absolute percent improvement (or loss) for our
software scheduler over backoff for sixteen processors. We
omit the hybrid numbers for brevity but as seen in Figure 6
it is similar to the proactive scheduler in all but the Ssca2
benchmark. The trends seen for backoff match those of pub-
lished results for similar eager/eager TMs using the STAMP
suite.

The main trend to note in the speedup results of Fig-
ure 6 is that in all but one corner case, Ssca2, proactive
scheduling outperforms backoff at least by sixteen proces-
sors. In particular, for the Delaunay benchmark proactive
scheduling is always better than backoff due to the large
amount of contention present. For Genome, Kmeans, Va-
cation, and Intruder Figure 6 shows that backoff plateaus
or reverses at high processor counts. On the other hand,

for those same benchmarks, proactive scheduling shows a
trend towards increased scaling that should continue for
even higher processor counts given the drastic reduction in
conflict rates seen by the bars in Figure 6. For Labyrinth
the high contention implies that neither contention manager
can do better than serialize all transactions. The proactive
scheduler does marginally better because it is able to prevent
wasted work over the backoff type manager by identifying
that almost all the transactions need to be stalled (though
the proactive scheduler does find a little parallelism in this
benchmark). The backoff manager, on the other hand, keeps
restarting transactions. In this situation one could foresee
using this dynamic identification of completely serialized op-
erations to save power by turning off cores for example.

For, Ssca2, backoff beats proactive scheduling in all pro-
cessor configurations. This is a corner cases due to the ex-
tremely low contention present. For Ssca2, the low con-
tention rate requires little to no contention management and
any overhead degrades performance scaling. In the schedul-
ing case for Ssca2, it is always incurring extra overhead from
running the scheduleTx() routine at the beginning of every
transaction even though the contention is extremely low.
This accounts for the degraded performance seen for the
scheduling case in Figure 6(f). With an adaptive policy, we
can gain back most of the performance lost in the Ssca2
benchmark as seen in Figure 6(f). Even with this corner
cases, the software scheduler achieves a 85% average perfor-
mance gain over backoff as shown in Table 4.

The adaptive hybrid policy also helps with the benchmark
Kmeans for lower processor counts. It gains back all the per-
formance lost at 2,4, and 8 processors and is comparable to
proactive scheduling at 16 as seen in Figure 6(c). This shows
that an adaptive method is helpful when contention is low at
more modest core counts. In all the benchmarks studied, the
hybrid method is comparable to proactive scheduling, usu-
ally performing slightly worse due to lost transaction history
information during the period backoff is used before switch-
ing to proactive scheduling.

4.4 Contention
Referring back to Figure 6 we see a strong correlation be-

tween increase in performance and reduction in contention.
For all but Ssca2, a reduction in contention leads to better
performance. The most marked examples of this are Kmeans
and Genome, where at sixteen processors the large amount
of contention inhibits scaling resulting in worse performance
than lower processor counts. Scheduling the transactions
proves beneficial as the decrease in contention, and hence
less re-execution of transactions allows continued scaling.

162

20

30

40

50

60

70

80

90

100

4

6

8

10

12

14

Pe
rc
en

t�C
on

te
nt
io
n

N
or
m
al
iz
ed

�S
pe

ed
up

0

10

20

30

40

50

60

70

80

90

100

0

2

4

6

8

10

12

14

2 4 8 16

Pe
rc
en

t�C
on

te
nt
io
n

N
or
m
al
iz
ed

�S
pe

ed
up

Number�of�Processors

(a) Delaunay

20

30

40

50

60

70

80

90

100

4

6

8

10

12

14

Pe
rc
en

t�C
on

te
nt
io
n

N
or
m
al
iz
ed

�S
pe

ed
up

0

10

20

30

40

50

60

70

80

90

100

0

2

4

6

8

10

12

14

2 4 8 16

Pe
rc
en

t�C
on

te
nt
io
n

N
or
m
al
iz
ed

�S
pe

ed
up

Number�of�Processors

(b) Genome

20

30

40

50

60

70

80

90

100

4

6

8

10

12

14

Pe
rc
en

t�C
on

te
nt
io
n

N
or
m
al
iz
ed

�S
pe

ed
up

0

10

20

30

40

50

60

70

80

90

100

0

2

4

6

8

10

12

14

2 4 8 16

Pe
rc
en

t�C
on

te
nt
io
n

N
or
m
al
iz
ed

�S
pe

ed
up

Number�of�Processors

(c) Kmeans

20

30

40

50

60

70

80

90

100

4

6

8

10

12

14

Pe
rc
en

t�C
on

te
nt
io
n

N
or
m
al
iz
ed

�S
pe

ed
up

0

10

20

30

40

50

60

70

80

90

100

0

2

4

6

8

10

12

14

2 4 8 16

Pe
rc
en

t�C
on

te
nt
io
n

N
or
m
al
iz
ed

�S
pe

ed
up

Number�of�Processors

(d) Vacation

20

30

40

50

60

70

80

90

100

4

6

8

10

12

14

Pe
rc
en

t�C
on

te
nt
io
n

N
or
m
al
iz
ed

�S
pe

ed
up

0

10

20

30

40

50

60

70

80

90

100

0

2

4

6

8

10

12

14

2 4 8 16

Pe
rc
en

t�C
on

te
nt
io
n

N
or
m
al
iz
ed

�S
pe

ed
up

Number�of�Processors

(e) Intruder

20

30

40

50

60

70

80

90

100

4

6

8

10

12

14

Pe
rc
en

t�C
on

te
nt
io
n

N
or
m
al
iz
ed

�S
pe

ed
up

0

10

20

30

40

50

60

70

80

90

100

0

2

4

6

8

10

12

14

2 4 8 16

Pe
rc
en

t�C
on

te
nt
io
n

N
or
m
al
iz
ed

�S
pe

ed
up

Number�of�Processors

(f) Ssca2

10

20

30

40

50

60

70

80

90

100

2

4

6

8

10

12

14

Pe
rc
en

t�C
on

te
nt
io
n

N
or
m
al
iz
ed

�S
pe

ed
up

Contention�Backoff

Contention�Scheduling

Contention�Scheduling�Hybrid

Backoff

Scheduling

S h d li H b id
0

10

20

30

40

50

60

70

80

90

100

0

2

4

6

8

10

12

14

2 4 8 16

Pe
rc
en

t�C
on

te
nt
io
n

N
or
m
al
iz
ed

�S
pe

ed
up

Number�of�Processors

Contention�Backoff

Contention�Scheduling

Contention�Scheduling�Hybrid

Backoff

Scheduling

Scheduling�Hybrid

(g) Labyrinth

Figure 6: Normalized speedup over sequential execution and percent contention for the STAMP benchmarks.
Speedup is represented by the lines, and the values are on the left y-axis, higher is better. Contention is
represented by the bars and values are on the right y-axis, lower is better

4.5 Time Breakdown
A runtime breakdown of the STAMP benchmarks at six-

teen processors is shown in Figure 7 for proactive schedul-
ing and backoff. The hybrid scheme is omitted for brevity
as the results are very similar to the standard proactive
scheduling algorithm. The time is broken down as non-
transactional, Operating System (OS), transactional, and
scheduling/backoff. The goal of our scheduling work is re-
duce the transactional portion of backoff, representing a
reduction in re-executed code. At the same time we are
trading off backoff time for scheduling time. In most cases
scheduling shows a reduction in both transactional and schedul-
ing/backoff time due to decreased amounts of contention.

In the Delaunay, Genome, Kmeans and Intruder bench-
marks, it is clear from the figure that scheduling is reducing
the time spent in the re-execution of transactions and the
usage of the contention manager. For the corner case we can
see why it performs poorly. In Ssca2, we see that the soft-
ware scheduler is spending time in the scheduling routines,
adding overhead to each transaction. This extra overhead is
in turn leading to the worse performance.

For the Vacation benchmark, it is hard to see that the
amount of time spent restarting transactions is slightly less

than the scheduling software case which is also indicated by
Figure 6(d) where the amount of contention is less for the
scheduling software, leading to better performance.

4.6 Sensitivity Analysis
Five sensitivity studies were performed by varying param-

eters that can affect the scheduling algorithm. These pa-
rameters were: prediction latency, conflict threshold, bloom
filter size, L2 cache size and L2 latency. In this section we
will present the parameter that affected execution the most,
prediction latency. The studies for conflict threshold and
bloom filter size showed little to no sensitivity so discussion
and data is omitted for brevity. We will briefly discuss cache
size and latency sensitivity at the end of this section.

In Figure 8 we analyze the sensitivity of the benchmarks
to the latency of the scheduler. The latency is varied from 1
to 1,000,000 cycles. The purpose of this study was to under-
stand what impact scheduler execution time has on overall
performance of the benchmarks as a whole. This is useful
in understanding how future hardware assist mechanisms
may be able to improve performance further. This study
was accomplished by implementing the proactive scheduler
in the M5 simulator. For general reference, the average ob-

163

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

N
or
m
al
iz
ed

�E
xe
cu
ti
on

�T
im

e

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Backoff Proactive�
Scheduling

Backoff Proactive�
Scheduling

Backoff Proactive�
Scheduling

Backoff Proactive�
Scheduling

Delaunay Kmeans Vacation Ssca2

N
or
m
al
iz
ed

�E
xe
cu
ti
on

�T
im

e

0.5

1

1.5

2

2.5

3
Scheduling/Backoff

Abort

Transactional

OS

Non�transactional

0

0.5

1

1.5

2

2.5

3

Backoff Proactive�
Scheduling

Backoff Proactive�
Scheduling

Backoff Proactive�
Scheduling

Genome Intruder Labyrinth

Scheduling/Backoff

Abort

Transactional

OS

Non�transactional

Figure 7: Time breakdown for the STAMP benchmarks running on 16 processors. Y-axis shows the normal-
ized time relative to sequential execution, lower is better.

��

��

��

��

	�

��

��

��

�
��
���
����
�����
������
�������

��
��
��

��

�	
��������
���	�����	�����

��
������
�������
�������
��������
���������
������
�������� �

Figure 8: Sensitivity to predictor latency for 16 pro-
cessor system. Speedup relative to sequential exe-
cution is presented.

served latency for the software implementation results in
Section 4.3 of the proactive scheduler was anywhere from
500 to 10,000 cycles depending on the benchmark.

Ssca2, the low contention corner case, is highly sensitive
to scheduler latency. This happens because there are no
conflicts to amortize the cost of the scheduler overhead.
On the other hand, Labyrinth, the high contention corner
case, is not sensitive to scheduler latency. For some bench-
marks like Delaunay, Genome and Vacation the graph is
non-monotonic. As seen in Figure 8 the highest speedup is
achieved around latencies of 1,000 cycles. Longer latencies
than 1,000 cycles increase runtime due to the latency dom-
inating, whereas shorter latencies also increase runtime due
to temporal characteristics of the transactions’ executions.
For example, in the case of Vacation, the better speedup
at higher latency is due to the properties of its red-black
tree operations being done in transactions. Updating the
tree spends the majority of time walking the tree, and doing
writes at the end. In most cases, these operations can pro-
ceed in parallel if the transaction executions are staggered
in time so early transaction commit before the later transac-
tions read the same section. In other words it is seeing a type
of “pipelining” effect. This staggering is being provided by
the longer latency by letting the proactive scheduler predict
more optimistically because the CPU Status array is slightly
stale due to similar race conditions like those present in the
software scheduler. This leads us to the conclusion that run-
ning transactions in parallel also depends to a first degree on
the timing of their executions. The Genome and Delaunay
benchmarks have similar properties to Vacation and there-

Table 5: Proactive Scheduler Misprediction rates for
16 processors.

Benchmark
%Mispredict %Mispredict %Mispredict

Total Parallel Serial
Delaunay 21.1% 18.4% 2.7%
Genome 11.1% 2.6% 8.5%
Kmeans 7.6% 2.3% 5.3%
Vacation 2.1% 2.1% 0.0%
Intruder 16.8% 5.3% 11.5%
Ssca2 0.3% 0.3% 0.0%
Labyrinth 17.9% 17.9% 0.0%

fore similar reasons as to why they prefer longer latencies for
scheduling. Currently we only determine how to schedule a
transaction with regard to their spatial characteristics, i.e.
the memory locations they access. Temporal aspects will
need to be considered as well to generate better schedules.

Level 2 cache size and latency showed little sensitivity
when analyzed. Still it is an important parameter to dis-
cuss because the proactive software scheduler depends on
the ability to access its rather large prediction data quickly.
For cache size we saw little sensitivity. For both the schedul-
ing and backoff based managers, the slow down followed the
same trend as cache size decreased: backoff lost performance
at the same rate and always performed worse for each bench-
mark except Ssca2. For cache latency, sensitivity was also
low. Scheduling and backoff lost performance again at the
same rate as the L2 got slower (we tested latencies from 10-
100 cycles). Scheduling again beat backoff in all cases except
for Ssca2. We omitted the data as both cache parameters
exhibited little sensitivity.

4.7 Predictor Analysis
Misprediction rates for the proactive scheduler are shown

in Table 5. A mispredict is when the scheduler either decides
to allow the transaction to run in parallel and a conflict
occurs, or when the scheduler decides to serialize two or
more transactions when they could have been run in parallel.
These mispredicts lead to additional runtime, so the lower
the mispredict the rate, the closer we are to an optimal
scheduling. The mispredict serial information was gathered
using a bloom filter that was 2048-bits in size, which for the
average transaction size observed in the benchmarks has a
1.6% degree of accuracy [5].

For the benchmarks Vacation, Ssca2, and Labyrinth, all
of the mispredicts were attributed to the scheduler being
overly optimistic i.e, predicting parallelism that does not

164

exist, but never predicting conflicts that do not exist. For
the remaining benchmarks there is a mix of both forms of
misprediction. For example, the Kmeans benchmark has
a total mispredict rate of 7.6% with roughly two thirds of
the predictions mispredicting a future conflict between the
transactions. This indicates the scheduling algorithm as it
stands currently, is sometimes slow to learn when transac-
tion behavior has diverged. We believe this is due to the
low sampling rate of the bloom filters to update conflict
confidences. The scheduler only inspects them if a serial-
ization among transactions was predicted and for the most
current transaction that was serialized against. As shown
in Section 4.6 the scheduler is highly sensitive to algorithm
latency, meaning more complicated prediction schemes that
increase scheduler overhead would adversely affect perfor-
mance. We believe that adding additional hardware to our
design in the future may help reduce this type of overly
pessimistic prediction, while minimally impacting scheduler
runtime.

5. RELATED WORK
Contention managers have primarily been studied in Soft-

ware Transactional Memories (STM) by Scherer et al. [25,
26]. The managers presented in these works have been reac-
tive in nature, fixing conflicts as they happen. The process
for deciding how much to backoff and which transaction to
abort on a conflict is decided by a set of heuristics. Work
has attempted to intelligently schedule transactions to avoid
conflicts. Work by Bai et al. [2] proposed such a technique
for software TM. The technique did work well, but the main
disadvantage was the need for the transaction manager to
have advance knowledge of the benchmark and its transac-
tions. This meant the manager had to be changed whenever
the benchmark changed. Another STM that is close to this
idea is by Aydonat et al. [1]. They use the idea of serial-
ization graph testing to perform contention management up
front. Another group has also used the idea of scheduling in
an STM, called CAR-STM [12], but they too require the use
of programmer provided hints. A paper by Zilles et al. [33]
is also similar to ours, in that they propose suspending con-
flicting transactions to avoid busy waiting. This work does
not employ hysteresis as this stalling only occurs when two
transactions conflict and does not work to prevent future
conflicts.

In hardware transactional memory, contention manage-
ment has so far been mainly overlooked. The primary form
of contention management to date has been some variant of
exponential backoff. There was a proposal for a smarter con-
tention manager by Bobba et al. [8], but the proposals were
not investigated in depth as this was not the focus of the
paper. Rather the paper pointed to the types of pathologies
present in HTMs, and did in depth analysis of what these
pathologies are and why they are important. In the work
by Hammond et al. [13], scheduling is used to order trans-
action commits when doing speculative loop parallelization.
The scheduling was limited to just either run the transac-
tions in loop order, or completely out of order. In work by
Rossback et al. [24] scheduling is done in the OS and is with
regard to thread priority as assigned by the OS. Work by
Yoo et al. [32] is similar in that they develop a learning con-
tention manager to schedule threads. They use a centralized
technique to hold threads from executing in a queue when
they measure a global contention rate that is higher than

some threshold to enable currently executing transactions
to complete. Their method is evaluated as a central hard-
ware queue for a HTM and as a central software queue for
a STM. They differ primarily in that their system runs less
than the number of threads that can be supported in the
system concurrently—not finding other independent work—
and the algorithm is centralized rather than distributed like
ours. In a recent work by Ramadan et al. [22], they look at
contention management from a different angle. Instead of
designing a new contention manager like in this work, they
add to the cache coherence policy to enable transactions to
share speculative data. This allows the authors to elimi-
nate conflicts that would otherwise occur. This work has
the same goal as ours, increasing concurrency, but takes a
different approach.

6. FUTURE WORK
The next step is to develop a fully distributed hardware

implementation of the proactive scheduler. While we roughly
studied the effects of having hardware acceleration by mod-
eling a zero-latency version of our software scheduler in M5
for our latency sensitivity study, it is not representative of
real hardware. The current software scheduler has rather
high memory requirements, far higher than what can be put
into hardware. The current model also does not take advan-
tage of the opportunities afforded by hardware, like a higher
sampling rate of transaction characteristics which cannot be
done in software currently due to the overheads involved.

The scheduling algorithm presented here also requires some
method to encode and evaluate the temporal characteristics
of a transaction. As was seen in the latency sensitivity stud-
ies, three benchmarks in particular were sensitive to timing
and performance could be improved by actually increasing
latency. This implies additional performance opportunities
by only partially serializing transactions to increase through-
put.

Other future work would include investigating other ways
to use the conflict information gathered during a program
run. It may be useful for parallelizing compilers and even for
debugging to help pinpoint bottlenecks that are serializing
execution more than anticipated. It could also conceivably
be used for power reduction as cores could be shut down if
sufficient parallelism can not be discovered during runtime.

7. CONCLUSION
We have shown that the contention manager makes a large

impact on system performance. Simple contention managers
such as randomized backoff are not adequate for managing
high amounts of contention in a transactional memory sys-
tem with a large number of processors. A well designed and
intelligent contention manager is more effective at handling
large amounts of contention. We have shown that by using
past conflict history to form predictions on future conflicts,
the system better utilizes the parallel resources in a multi-
core system. More importantly this technique requires no
additional programmer input, thereby preserving the ease-
of-use selling point transactional memory needs to be widely
adopted.

In this paper we have developed a novel software based
transaction scheduler. It effectively manages the concurrent
resources in the system by scheduling transactions with low
probability of conflicting to run concurrently. Even with

165

it’s moderate runtime overhead, the software prototype per-
forms much better than randomized backoff as the number
of processors is increased. On average we can increase per-
formance by 85% and reduce contention by 4-5x on average
for 16 processors. We believe this work opens up new areas
of research in TM for building dynamic systems that provide
even greater performance.

8. ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for their

suggestions and comments. This work was supported by
ARM Ltd.

9. REFERENCES
[1] U. Aydonat and T. Abdelrahman. Serializability of

transactions in software transactional memory. In
Proceedings of the 3rd ACM SIGPLAN Workshop on
Transactional Computing. Feb 2008.

[2] T. Bai, X. Shen, C. Zhang, W. N. Scherer III, C. Ding,
and M. L. Scott. A key-based adaptive transactional
memory executor. In Proceedings of the NSF Next
Generation Software Program Workshop. Mar 2007.
Invited paper. Also available as TR 909, Department of
Computer Science, University of Rochester, December
2006.

[3] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim,
A. G. Saidi, and S. K. Reinhardt. The m5 simulator:
Modeling networked systems. IEEE Micro, 26(4):52–60,
2006.

[4] G. Blake and T. Mudge. Duplicating and verifying
logtm with os support in the m5 simulator. Workshop
on Duplicating, Deconstructing and Debunking, 2007.

[5] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Commun. ACM, 13(7):422–426, 1970.

[6] C. Blundell, E. C. Lewis, and M. M. K. Martin.
Unrestricted transactional memory: Supporting i/o and
system calls within transactions. Technical Report
CIS-06-09, Department of Computer and Information
Science, University of Pennsylvania, Apr 2006.

[7] J. Bobba, N. Goyal, M. D. Hill, M. M. Swift, and D. A.
Wood. Tokentm: Efficient execution of large
transactions with hardware transactional memory. In
Proceedings of the 35th Annual International
Symposium on Computer Architecture. Jun 2008.

[8] J. Bobba, K. E. Moore, L. Yen, H. Volos, M. D. Hill,
M. M. Swift, and D. A. Wood. Performance pathologies
in hardware transactional memory. In Proceedings of
the 34th Annual International Symposium on Computer
Architecture. Jun 2007.

[9] C. Cao Minh, J. Chung, C. Kozyrakis, and
K. Olukotun. STAMP: Stanford transactional
applications for multi-processing. In IISWC ’08:
Proceedings of The IEEE International Symposium on
Workload Characterization, September 2008.

[10] C. Cao Minh, M. Trautmann, J. Chung,
A. McDonald, N. Bronson, J. Casper, C. Kozyrakis,
and K. Olukotun. An effective hybrid transactional
memory system with strong isolation guarantees. In
Proceedings of the 34th Annual International
Symposium on Computer Architecture. Jun 2007.

[11] L. Ceze, J. Tuck, C. Cascaval, and J. Torrellas. Bulk
disambiguation of speculative threads in
multiprocessors. In Proceedings of the 33rd Annual
International Symposium on Computer Architecture.
June 2006.

[12] S. Dolev, D. Hendler, and A. Suissa. Car-stm:
scheduling-based collision avoidance and resolution for
software transactional memory. In Proceedings of the
Twenty-Seventh Annual ACM Symposium on Principles
of Distributed Computing (PODC), pages 125–134.
August 2008.

[13] L. Hammond, B. D. Carlstrom, V. Wong, M. Chen,
C. Kozyrakis, and K. Olukotun. Transactional
coherence and consistency: Simplifying parallel
hardware and software. IEEE Micro, 24(6), Nov-Dec
2004.

[14] M. Herlihy, V. Luchangco, M. Moir, and I. William N.
Scherer. Software transactional memory for
dynamic-sized data structures. pages 92–101, Jul 2003.

[15] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In
Proceedings of the 20th Annual International
Symposium on Computer Architecture, pages 289–300.
May 1993.

[16] B.-J. Kwak, N.-O. Song, and L. Miller. Performance
analysis of exponential backoff. Networking,
IEEE/ACM Transactions on, 13(2):343–355, April
2005.

[17] C. Lee. An algorithm for path connections and its
applications. In IRE Transactions on Electronic
Computers, 1961.

[18] A. McDonald, J. Chung, D. C. Brian, C. Cao Minh,
H. Chafi, C. Kozyrakis, and K. Olukotun. Architectural
semantics for practical transactional memory. pages
53–65. Jun 2006.

[19] M. Moir. Hybrid transactional memory, Jul 2005.
Unpublished manuscript.

[20] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill,
and D. A. Wood. Logtm: Log-based transactional
memory. In Proceedings of the 12th International
Symposium on High-Performance Computer
Architecture, pages 254–265. Feb 2006.

[21] M. Olszewski, J. Cutler, and J. G. Steffan. Judostm:
A dynamic binary-rewriting approach to software
transactional memory. In Parallel Architecture and
Compilation Techniques, 2007. PACT 2007. 16th
International Conference on, pages 365–375. IEEE,
2007.

[22] H. E. Ramadan, C. J. Rossbach, O. S. Hofmann, and
E. Witchel. Dependence-aware transactional memory.
In The 41st Annual International Symposium on
Microarchitecture. Nov 2008.

[23] H. E. Ramadan, C. J. Rossbach, D. E. Porter, O. S.
Hofmann, A. Bhandari, and E. Witchel.
Metatm/txlinux: transactional memory for an
operating system. SIGARCH Comput. Archit. News,
35(2):92–103, 2007.

166

[24] C. J. Rossbach, O. S. Hofmann, D. E. Porter, H. E.
Ramadan, B. Aditya, and E. Witchel. Txlinux: using
and managing hardware transactional memory in an
operating system. In SOSP ’07: Proceedings of
twenty-first ACM SIGOPS symposium on Operating
systems principles, pages 87–102, New York, NY, USA,
2007. ACM.

[25] W. N. Scherer III and M. L. Scott. Contention
management in dynamic software transactional
memory. In Proceedings of the ACM PODC Workshop
on Concurrency and Synchronization in Java Programs,
St. John’s, NL, Canada, Jul 2004.

[26] W. N. Scherer III and M. L. Scott. Advanced
contention management for dynamic software
transactional memory. In Proceedings of the 24th ACM
Symposium on Principles of Distributed Computing,
Las Vegas, NV, Jul 2005.

[27] N. Shavit and D. Touitou. Software transactional
memory. In Proceedings of the 14th ACM Symposium
on Principles of Distributed Computing, pages 204–213.
Aug 1995.

[28] A. Shriraman, M. F. Spear, H. Hossain, V. Marathe,
S. Dwarkadas, and M. L. Scott. An integrated
hardware-software approach to flexible transactional
memory. In Proceedings of the 34rd Annual
International Symposium on Computer Architecture.
Jun 2007.

[29] T. Skare and C. Kozyrakis. Early release: Friend or
foe? In Workshop on Transactional Memory
Workloads. Jun 2006.

[30] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta. The SPLASH-2 programs: Characterization
and methodological considerations. In Proceedings of
the 22th International Symposium on Computer
Architecture, pages 24–36, Santa Margherita Ligure,
Italy, 1995.

[31] L. Yen, J. Bobba, M. M. Marty, K. E. Moore,
H. Volos, M. D. Hill, M. M. Swift, and D. A. Wood.
Logtm-se: Decoupling hardware transactional memory
from caches. In Proceedings of the 13th International
Symposium on High-Performance Computer
Architecture(HPCA). Feb 2007.

[32] R. M. Yoo and H.-H. S. Lee. Adaptive transaction
scheduling for transactional memory systems. In SPAA
’08: Proceedings of the twentieth annual symposium on
Parallelism in algorithms and architectures, pages
169–178, New York, NY, USA, 2008. ACM.

[33] C. Zilles and L. Baugh. Extending hardware
transactional memory to support nonbusy waiting and
nontransactional actions. In Proceedings of the First
ACM SIGPLAN Workshop on Languages, Compilers,
and Hardware Support for Transactional Computing.
Jun 2006.

167

